Control of mitochondrial biogenesis, ROS level, and cytosolic Ca2+ concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts.

نویسندگان

  • Vanessa E Jahnke
  • Odile Sabido
  • Damien Freyssenet
چکیده

Mitochondria can sense signals linked to changes in energy demand to affect nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. We have investigated the regulation of mitochondrial biogenesis and production of putative retrograde signaling agents [hydrogen peroxide (H(2)O(2)) and Ca(2+)] during the cell cycle and the onset of differentiation in L6E9 muscle cells. The biosynthesis of cardiolipin and mitochondrial proteins was mainly achieved in S phase, whereas the expression of mitochondrial biogenesis factors [peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-delta, and neuronal nitric oxide synthase 1] was regularly increased from G(1) to G(2)M phase. In agreement with the increase in mitochondrial membrane potential, mitochondria in S and G(2)M phases have a significantly higher H(2)O(2) level when compared with G(1) phase. By contrast, the onset of differentiation was characterized by a marked reduction in mitochondrial protein expression and mitochondrial H(2)O(2) level. The capacity of mitochondria to release Ca(2+) in response to a metabolic challenge was significantly decreased at the onset of differentiation. Finally, an increase in calmodulin expression in S and G(2)M phases and a transitory increase in phosphorylated nuclear factor of activated T cells (NFAT) c3 in S phase was observed. NFATc3 phosphorylation was markedly decreased at the onset of differentiation. Our data point to functional links between the control of mitochondrial biogenesis and the regulation of the level of retrograde signaling agents during the cell cycle and the onset of differentiation in L6E9 muscle cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of mitochondrial biogenesis, ROS level, and cytosolic Ca concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts

Jahnke VE, Sabido O, Freyssenet D. Control of mitochondrial biogenesis, ROS level, and cytosolic Ca concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts. Am J Physiol Cell Physiol 296: C1185–C1194, 2009. First published March 18, 2009; doi:10.1152/ajpcell.00377.2008.—Mitochondria can sense signals linked to changes in energy demand to affect nuclear gene expres...

متن کامل

Evidence for Mitochondrial Respiratory Deficiency in Rat Rhabdomyosarcoma Cells

BACKGROUND Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete myogenic differentiation. However, it is c...

متن کامل

Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion

To replicate, the trypomastigote form of Trypanosoma cruzi must invade host cells. Since a role for Ca2+ in the process of cell invasion by several intracellular parasites has been postulated, changes in the intracellular Ca2+ concentration in T. cruzi trypomastigotes and in tissue culture L6E9 myoblasts during their interaction were studied at the single cell level using digital imaging fluore...

متن کامل

A Review of Mitochondrial Biogenesis and Cellular Response

Abstract Background and Objectives Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover of this process. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly pla...

متن کامل

P-19: Association of Poor Chromatin Remodeling with Cytosolic ROS and Mitochondrial ROS in Sperm of Infertile Men

Background: Cytoplasm and mitochondria are considered as the major origins of sperm ROS production. Sperm is prone to DNA damage by exposure to ROS or due impaired chromatin remodeling or low DNA protamination. Therefore, the aim of this study was to see if there is any association between impaired chromatin packaging and origin of ROS production. Materials and Methods: Cytosolic ROS, mitochond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 296 5  شماره 

صفحات  -

تاریخ انتشار 2009